$\int e^x\left(\frac{2 x+1}{2 \sqrt{x}}\right) d x=$ |
$\frac{1}{2 \sqrt{x}} e^x+c$ $-e^x \sqrt{x}+C$ $-\frac{1}{2 \sqrt{x}} e^x+C$ $e^x \sqrt{x}+C$ |
$e^x \sqrt{x}+C$ |
The correct answer is Option (4) → $e^x \sqrt{x}+C$ $\int e^x\left(\frac{2 x+1}{2 \sqrt{x}}\right) d x$ $=\int e^x\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right) d x$ $f(x)=\sqrt{x},f(x)=\frac{1}{2\sqrt{x}}$ $=e^x\sqrt{x}+C$ |