CUET Preparation Today
CUET
-- Mathematics - Section B1
Indefinite Integration
The value of $\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}}(x^3+x\, cos x+tan^5x)dx$ is :
0
1
2
$\pi $
$I=\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}}(x^3+x\, cos x+tan^5x)dx$
$=0$ (as for odd functions $\int\limits_{-a}^af(x)dx=0$)