The area of region bounded by two curves $y^2=x$ and $x^2=y$ is: |
1 sq. unit $\frac{1}{2}$ sq. unit $\frac{1}{3}$ sq. unit $\frac{2}{3}$ sq. unit |
$\frac{1}{3}$ sq. unit |
The correct answer is Option (3) → $\frac{1}{3}$ sq. unit Given equations, $y^2=x$ ...(1) $x^2=y$ ...(2) From (1) and (2), we can get $(y^2)^2=y$ $⇒y(y^3-1)=0$ $⇒y(y-1)(y^2+y+1)=0$ $⇒y=0\,or\,1$ $∴Area=\left|\int\limits_0^1(\text{Right-Left})dy\right|$ $=\left|\int\limits_0^1y^2\,dy-\int\limits_0^1\sqrt{y}\,dy\right|$ $=\left|\frac{1}{3}-\frac{2}{3}\right|=\frac{1}{3}$ sq. unit |