Eight charged water droplets, each of radius 1 mm and carrying a charge $5×10^{-10} C$, coalesce to form a single drop. The potential of the bigger drop is. |
36000 V 18000 V 15000 V 30000 V |
18000 V |
The correct answer is Option (2) → 18000 V Radius of each small drop: $r = 1 \, \text{mm} = 10^{-3} \, \text{m}$ Charge on each drop: $q = 5 \times 10^{-10} \, \text{C}$ Number of drops: $n = 8$ When $n$ drops coalesce: $R^3 = n r^3 \;\;\Rightarrow\;\; R = r \, n^{1/3}$ $R = 10^{-3} \times 8^{1/3} = 10^{-3} \times 2 = 2 \times 10^{-3} \, \text{m}$ Total charge on bigger drop: $Q = n q = 8 \times 5 \times 10^{-10} = 4 \times 10^{-9} \, \text{C}$ Potential of spherical drop: $V = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q}{R}$ $V = \frac{9 \times 10^9 \cdot 4 \times 10^{-9}}{2 \times 10^{-3}}$ $V = \frac{36}{2 \times 10^{-3}} = 18 \times 10^3 \, \text{V}$ Answer: Potential of the bigger drop is $1.8 \times 10^4 \, \text{V}$ |