The maximum value of the function $f(x)=x+\sqrt{1-x}$ in the interval [0, 1] is, |
$\frac{1}{4}$ $\frac{5}{4}$ $\frac{3}{4}$ 1 |
$\frac{5}{4}$ |
The correct answer is Option (2) → $\frac{5}{4}$ $f(x)=x+\sqrt{1-x}$ for max. value $f'(c)=0$ and $f''(c)<0$ Now, $f'(c)=1-\frac{1}{2\sqrt{1-x}}=0$ $⇒2\sqrt{1-x}=1$ $⇒4(1-x)=1$ $⇒x=\frac{3}{4}$ $∴f(\frac{3}{4})=\frac{3}{4}+\sqrt{1-\frac{3}{4}}=\frac{3}{4}+\frac{1}{2}$ $=\frac{5}{4}$ |