The equation of line passing through origin and parallel to the line $\vec r=3\hat i+4\hat j-5\hat k+t\left(2\hat i-\hat j+7\hat k\right)$, where t is a parameter, is: (A) $\frac{x}{2}=\frac{y}{-1}=\frac{z}{7}$ Choose the correct answer from the options given below: |
(A) and (B) only (A), (B) and (C) only (C), (D) and (E) only (A) only |
(A) and (B) only |
The correct answer is Option (1) → (A) and (B) only The given equation of a line is, $r=(3\hat i+4\hat j-5\hat k)+t(2\hat i-\hat j+7\hat k)$ ∴ Direction vector, $d=2\hat i-\hat j+7\hat k$ Equation of line passing through origin, $r=m(2\hat i-\hat j+7\hat k)$ $⇒\vec r=m(2\hat i-\hat j+7\hat k)$ (B) the parametric form of the equation: $x=2m,y=-m,z=7m$ $\frac{x}{2}=\frac{y}{-1}=\frac{z}{7}$ (A) |