Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Algebra

Question:

The correct values of a, b and c for which the matrix $\begin{bmatrix}0 & a & 3\\ 2 & b & -1\\c & 1 & 0 \end{bmatrix}$ is a Skew symmetric matrix are:

Options:

$a=-2, b = 0, c= - 3 $

$a=-2, b=-1, c=-3 $

$a=2, b=0, c=3 $

$a=-2, b=0, c=3 $

Correct Answer:

$a=-2, b = 0, c= - 3 $

Explanation:

The correct answer is Option (1) → $a=-2, b = 0, c= - 3 $

$A=\begin{bmatrix}0 & a & 3\\ 2 & b & -1\\c & 1 & 0 \end{bmatrix}⇒A^T=\begin{bmatrix}0 & -2 & -c\\ -a & -b & -1\\-3 & 1 & 0 \end{bmatrix}$

$A=-A^T$

$⇒a=-2, b = 0, c= - 3$