The correct values of a, b and c for which the matrix $\begin{bmatrix}0 & a & 3\\ 2 & b & -1\\c & 1 & 0 \end{bmatrix}$ is a Skew symmetric matrix are: |
$a=-2, b = 0, c= - 3 $ $a=-2, b=-1, c=-3 $ $a=2, b=0, c=3 $ $a=-2, b=0, c=3 $ |
$a=-2, b = 0, c= - 3 $ |
The correct answer is Option (1) → $a=-2, b = 0, c= - 3 $ $A=\begin{bmatrix}0 & a & 3\\ 2 & b & -1\\c & 1 & 0 \end{bmatrix}⇒A^T=\begin{bmatrix}0 & -2 & -c\\ -a & -b & -1\\-3 & 1 & 0 \end{bmatrix}$ $A=-A^T$ $⇒a=-2, b = 0, c= - 3$ |