Match List-I with List-II
Choose the correct answer from the options given below: |
(A)-(IV), (B)-(III), (C)-(II), (D)-(I) (A)-(III), (B)-(II), (C)-(IV), (D)-(I) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (A)-(IV), (B)-(III), (C)-(I), (D)-(II) |
(A)-(III), (B)-(II), (C)-(IV), (D)-(I) |
The correct answer is Option (2) → (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
Explanation: (A) $\displaystyle \int \frac{dx}{x^{2}-4}$ Use the standard result $\displaystyle \int \frac{dx}{x^{2}-a^{2}} = \frac{1}{2a}\log\left|\frac{x-a}{x+a}\right|+C$. Here $a=2$, so the answer is $\displaystyle \frac{1}{4}\log\left|\frac{x-2}{x+2}\right| + C$, which matches (III). (B) $\displaystyle \int \frac{1}{\sqrt{16-x^{2}}}\,dx$ Use the standard result $\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}} = \sin^{-1}\left(\frac{x}{a}\right) + C$. Here $a=4$, so the answer is $\displaystyle \sin^{-1}\left(\frac{x}{4}\right) + C$, which matches (II). (C) $\displaystyle \int \frac{1}{16+x^{2}}\,dx$ Use the standard result $\displaystyle \int \frac{dx}{a^{2}+x^{2}} = \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C$. Here $a=4$, so the answer is $\displaystyle \frac{1}{4}\tan^{-1}\left(\frac{x}{4}\right) + C$, which matches (IV). (D) $\displaystyle \int \frac{1}{\sqrt{4+x^{2}}}\,dx$ Use the standard result $\displaystyle \int \frac{dx}{\sqrt{x^{2}+a^{2}}} = \log\left|x+\sqrt{x^{2}+a^{2}}\right| + C$. Here $a=2$, so the answer is $\displaystyle \log\left|x+\sqrt{4+x^{2}}\right| + C$, which matches (I). |