If $\begin{bmatrix} x & -2 & 3 \\ y & 0 & -4 \\ 2 & z & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of \( x + y + z \) is |
9 -1 7 3 |
3 |
The correct answer is Option (4) → 3 Given matrix: $\begin{bmatrix} x & -2 & 3 \\ y & 0 & -4 \\ 2 & z & 0 \end{bmatrix}$ is skew-symmetric Skew-symmetric property: $A^T = -A$ ⟺ $a_{ij} = -a_{ji}$ and $a_{ii} = 0$ $x = -x \Rightarrow x = 0$ $y = -(-2) \Rightarrow y = 2$ $z = -(-1) \Rightarrow z = 1$ Hence , $x + y + z = 0 + 2 + 1 = 3$ |