If the cost function and revenue function of x units of an item are given by $C(x)=25x^2-x$ and $R(x)=4x$. Then the number of items to be produced to have maximum profit is, |
$\frac{1}{10}$ $\frac{1}{5}$ $\frac{1}{15}$ $\frac{1}{7}$ |
$\frac{1}{10}$ |
The correct answer is Option (1) → $\frac{1}{10}$ The profit function P(x) is, $P(x)=R(x)-C(x)$ $=4x-(25x^2-x)$ $=-25x^2+5x$ for max. profit, $P'(c)=0$ $⇒-50c+5=0$ $⇒c=\frac{1}{10}$ |