Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Probability

Question:

Let A and B be independent events such that P(A) = 0.3 and P(B) = 0.4, then

Match List-I with List-II

List-I

List-II

(A) P(A ∩ B)

(I) 0.3

(B) P(A ∪ B)

(II) 0.4

(C) P(A|B)

(III) 0.12

(D) P(B|A)

(IV) 0.58

Choose the correct answer from the options given below:

Options:

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

(A)-(IV), (B)-(I), (C)-(III), (D)-(II)

Correct Answer:

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Explanation:

The correct answer is Option (3) → (A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Given:

  • $P(A) = 0.3$

  • $P(B) = 0.4$

  • $A$ and $B$ are independent events.

Calculations:

(A) $P(A \cap B) = P(A) \cdot P(B) = 0.3 \cdot 0.4 = 0.12$

(B) $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.3 + 0.4 - 0.12 = 0.58$

(C) $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.12}{0.4} = 0.3$

(D) $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.12}{0.3} = 0.4$

Matching:

List-I List-II
(A) $P(A \cap B)$ (III) 0.12
(B) $P(A \cup B)$ (IV) 0.58
(C) $P(A|B)$ (I) 0.3
(D) $P(B|A)$ (II) 0.4