Which of the following functions from Z to Z are bijections ? (where Z is the set of integers) |
$f(x)=x^3$ $f(x)=x+2$ $f(x)=x^3+1$ $f(x)=x^2+1$ |
$f(x)=x+2$ |
Check each function for injectivity and surjectivity: 1. $f(x) = x^3$ Injective: If $x_1^3 = x_2^3 \Rightarrow x_1 = x_2$ ✅ Surjective: For any $y \in \mathbb{Z}$, $x = \sqrt[3]{y} \in \mathbb{Z}$ (only if $y$ is a perfect cube). Not all integers are perfect cubes ❌ Not bijection 2. $f(x) = x + 2$ Injective: $x_1 + 2 = x_2 + 2 \Rightarrow x_1 = x_2$ ✅ Surjective: For any $y \in \mathbb{Z}$, $x = y - 2 \in \mathbb{Z}$ ✅ Bijection ✅ 3. $f(x) = x^3 + 1$ Injective: $x_1^3 + 1 = x_2^3 + 1 \Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2$ ✅ Surjective: For any $y \in \mathbb{Z}$, $x^3 = y - 1$. Not all integers can be written as perfect cube + 1 ❌ Not bijection 4. $f(x) = x^2 + 1$ Injective: $x_1^2 + 1 = x_2^2 + 1 \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = \pm x_2$ ❌ Not injective, so not bijection ❌ Answer: $f(x) = x + 2$ |