Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

Which of the following functions from Z to Z are bijections ? (where Z is the set of integers)

Options:

$f(x)=x^3$

$f(x)=x+2$

$f(x)=x^3+1$

$f(x)=x^2+1$

Correct Answer:

$f(x)=x+2$

Explanation:

Check each function for injectivity and surjectivity:

1. $f(x) = x^3$

Injective: If $x_1^3 = x_2^3 \Rightarrow x_1 = x_2$ ✅

Surjective: For any $y \in \mathbb{Z}$, $x = \sqrt[3]{y} \in \mathbb{Z}$ (only if $y$ is a perfect cube). Not all integers are perfect cubes ❌

Not bijection

2. $f(x) = x + 2$

Injective: $x_1 + 2 = x_2 + 2 \Rightarrow x_1 = x_2$ ✅

Surjective: For any $y \in \mathbb{Z}$, $x = y - 2 \in \mathbb{Z}$ ✅

Bijection ✅

3. $f(x) = x^3 + 1$

Injective: $x_1^3 + 1 = x_2^3 + 1 \Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2$ ✅

Surjective: For any $y \in \mathbb{Z}$, $x^3 = y - 1$. Not all integers can be written as perfect cube + 1 ❌

Not bijection

4. $f(x) = x^2 + 1$

Injective: $x_1^2 + 1 = x_2^2 + 1 \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = \pm x_2$ ❌

Not injective, so not bijection ❌

Answer: $f(x) = x + 2$