The magnetic field of a planet at any location is approximately 0.5 G. Estimate its dipole moment if its position from the centre is $25.6 \times 10^6 M$. Assume the planet to be of spherical shape: |
$11.3 \times 10^{20} Am^2$ $8.39 \times 10^{20} Am^2$ $8.39 \times 10^{24} Am^2$ $36.2 \times 10^{24} Am^2$ |
$8.39 \times 10^{24} Am^2$ |
The correct answer is Option (3) → $8.39 \times 10^{24} Am^2$ The equitorial magnetic field is - $B=\frac{μ_0}{4π}\frac{M}{r^3}$ where, B, Magnetic field = $0.5G=0.5×10^{-4}T$ $r$, radius from center of planet = $25.6×10^6m$ $M=\frac{Br^3}{\frac{μ_0}{4π}}=\frac{(0.5×10^{-4})×(25.6×10^6)^3}{2×10^{-7}}$ $≃8.39×10^{24}Am^2$ |