The angle of elevation of the top of a tower from a certain point is 60°. If the observer moves 10 m away from the tower, the angle of elevation of the top of the tower decreases by 15°. The height of the tower is: |
27.3 m 21.9 m 23.65 m 17.3 m |
23.65 m |
The correct answer is Option (3) → 23.65 m Given: Initial angle of elevation = 60° Let height of tower = $h$ From first triangle: $\tan 60^\circ = \frac{h}{x} \Rightarrow \sqrt{3} = \frac{h}{x} \Rightarrow h = x\sqrt{3}$ From second triangle: $\tan 45^\circ = \frac{h}{x + 10} \Rightarrow 1 = \frac{h}{x + 10} \Rightarrow h = x + 10$ Equating both expressions for $h$: $x\sqrt{3} = x + 10$ $x(\sqrt{3} - 1) = 10$ $x = \frac{10}{\sqrt{3} - 1} \cdot \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{10(\sqrt{3} + 1)}{2}$ $x = 5(\sqrt{3} + 1)$ Now, $h = x\sqrt{3} = 5(\sqrt{3} + 1)\sqrt{3} = 5(\sqrt{9} + \sqrt{3}) = 5(3 + \sqrt{3})$ |