The set of values of x for which the inequality $|x-1|+|x+1|<4$ always holds true, is |
$(-2, 2)$ $(-∞,-2)∪(2,∞)$ $(-∞, -1]∪[1,∞)$ none of these |
$(-2, 2)$ |
On the LHS of the given inequation there are two terms $|x-1|$ and $|x + 1|$. On equating $x - 1$ and $x + 1$ to zero, we get: $x = -1$ and 1 as critical points. These points divide the real line into three regions viz. $(-∞, -1), [-1, 1)$ and $[1, ∞)$. So, we consider the following cases: CASE I When $-∞ < x < -1$ In this case, we have $|x-1|=-(x-1)$ and $|x+1| = -(x + 1)$ $∴|x-1|+|x+1|<4$ $⇒-(x-1)-(x + 1) < 4⇒-2x <4⇒ x>-2$ But, $-∞<x<-1$ $∴x ∈ (-2, -1)$ CASE II When $-1 ≤ x <1$ In this case, we have $|x-1|=-(x-1)$ and $|x+1|=x+1$ $∴|x-1|+|x+1|<4$ $⇒-(x-1)+x+1<4$ $⇒2 <4$, which is true for all $x ∈ [-1, 1)$. $∴x ∈[-1,1)$ CASE III When $1 ≤x<∞$ In this case, we have $|x-1|= x-1$ and $|x+1| = x+1$ $∴|x-1|+|x+1|<4$ $⇒x-1+x+1<4⇒ x <2$ $⇒ x ∈ [1, 2)$ $[∵1≤x<∞]$ Hence, $x ∈ (-2, -1) ∪[-1, 1)∪[1, 2)$ or, $x ∈ (-2, 2)$. |