Match List-I with List-II Consider the function $f(x) = 2x^3 − 21x^2 + 36x + 80, x∈[0, 6]$. Then
Choose the correct answer from the options given below: |
(A)-(I), (B)-(III), (C)-(II), (D)-(IV) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (A)-(IV), (B)-(III), (C)-(I), (D)-(II) (A)-(IV), (B)-(III), (C)-(II), (D)-(I) |
(A)-(IV), (B)-(III), (C)-(I), (D)-(II) |
The correct answer is Option (3) → (A)-(IV), (B)-(III), (C)-(I), (D)-(II) Given: $f(x)=2x^{3}-21x^{2}+36x+80,\quad x\in[0,6]$ Derivative: $f'(x)=6x^{2}-42x+36=6(x^{2}-7x+6)=6(x-1)(x-6)$ Critical points: $x=1,\;x=6$ Values: $f(0)=80$ $f(1)=2-21+36+80=97$ $f(6)=2(216)-21(36)+36(6)+80=432-756+216+80=-28$ Second derivative: $f''(x)=12x-42 \Rightarrow f''(0)=-42$ Matching: (A) one of its critical points is at $x=\;6\ \Rightarrow$ (IV) (B) absolute maximum value $=97\ \Rightarrow$ (III) (C) absolute minimum value $=-28\ \Rightarrow$ (I) (D) $f''(0)=-42\ \Rightarrow$ (II) |