Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Applications of Derivatives

Question:

Match List-I with List-II

Consider the function $f(x) = 2x^3 − 21x^2 + 36x + 80, x∈[0, 6]$. Then

List-I

List-II

(A) one of its critical points is at $x$ =

(I) -28

(B) Its absolute maximum value is

(II) -42

(C) Its absolute minimum value is

(III) 97

(D) Its second derivative at $x = 0$ is

(IV) 6

Choose the correct answer from the options given below:

Options:

(A)-(I), (B)-(III), (C)-(II), (D)-(IV)

(A)-(III), (B)-(IV), (C)-(II), (D)-(I)

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

(A)-(IV), (B)-(III), (C)-(II), (D)-(I)

Correct Answer:

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

Explanation:

The correct answer is Option (3) → (A)-(IV), (B)-(III), (C)-(I), (D)-(II)

Given: $f(x)=2x^{3}-21x^{2}+36x+80,\quad x\in[0,6]$

Derivative: $f'(x)=6x^{2}-42x+36=6(x^{2}-7x+6)=6(x-1)(x-6)$

Critical points: $x=1,\;x=6$

Values:

$f(0)=80$

$f(1)=2-21+36+80=97$

$f(6)=2(216)-21(36)+36(6)+80=432-756+216+80=-28$

Second derivative: $f''(x)=12x-42 \Rightarrow f''(0)=-42$

Matching:

(A) one of its critical points is at $x=\;6\ \Rightarrow$ (IV)

(B) absolute maximum value $=97\ \Rightarrow$ (III)

(C) absolute minimum value $=-28\ \Rightarrow$ (I)

(D) $f''(0)=-42\ \Rightarrow$ (II)