The area of the region bounded by the curve $y = x + 1$, x-axis and the lines $x = 2$ and $x = 3$ is |
$\frac{9}{2}$ sq. units $\frac{7}{2}$ sq. units $\frac{13}{2}$ sq. units $\frac{5}{2}$ sq. units |
$\frac{7}{2}$ sq. units |
The correct answer is Option (2) → $\frac{7}{2}$ sq. units Given: $y = x + 1$, bounded by $x$-axis, $x = 2$ and $x = 3$ Area $A = \int_2^3 (x+1) \, dx = \left[ \frac{x^2}{2} + x \right]_2^3$ Area $A = \frac{15}{2} - 4 = \frac{7}{2}$ Answer: $\frac{7}{2}$ sq. units |