The marginal cost (MC) and marginal revenue (MR) functions of a product are $MC = 20+\frac{x}{20}$ and $MR = 30$ respectively. If the fixed cost is 200, then the maximum value of the profit is: |
Rs. 750 Rs. 800 Rs. 640 Rs. 940 |
Rs. 800 |
The correct answer is Option (2) → Rs. 800 Given: $MC = 20 + \frac{x}{20}, \quad MR = 30, \quad \text{Fixed cost} = 200$ Total cost (TC): $TC = \int MC \, dx + 200 = \int \left(20 + \frac{x}{20}\right) dx + 200$ $= 20x + \frac{x^2}{40} + 200$ Total revenue (TR): $TR = \int MR \, dx = \int 30 \, dx = 30x$ Profit function: $P(x) = TR - TC = 30x - \left(20x + \frac{x^2}{40} + 200\right)$ $= 10x - \frac{x^2}{40} - 200$ To maximize profit, differentiate: $\frac{dP}{dx} = 10 - \frac{x}{20}$ Set $\frac{dP}{dx}=0 \;\;\Rightarrow\;\; 10 - \frac{x}{20} = 0 \;\;\Rightarrow\;\; x = 200$ Profit at $x=200$: $P(200) = 10(200) - \frac{200^2}{40} - 200$ $= 2000 - 1000 - 200$ $= 800$ therefore, The maximum value of the profit is $800$. |