If $f(x)=\frac{x^{10}}{10}+\frac{x^9}{9}+............+\frac{x^2}{2}+x+1$ then the value of $f'(0)$ is : |
0 1 100 101 |
1 |
The correct answer is Option (2) → 1 $f(x)=\frac{x^{10}}{10}+\frac{x^9}{9}+............+\frac{x^2}{2}+x+1$ $f'(x)=x^9+x^8+.........+x+1$ $⇒f'(0)=1$ |