If $f(x)$ and $g(x)$ are two continuous functions defined on $[-a, a]$, then the value of $\int\limits_{-a}^a\{f(x)+f(-x)\}\{g(x)-g(-x)\} d x$, is |
$2 a$ $f(a) g(a)$ $a$ none of these |
none of these |
Clearly, $f(x)+f(-x)$ is an even function and $g(x)+g(-x)$ is an odd function. ∴ $\{f(x)+f(-x)\}\{g(x)-g(-x)\}$ is an odd function. $\Rightarrow \int\limits_{-a}^a\{f(x)+f(-x)\}\{g(x)-g(-x)\} d x=0$ |