A e.m.f. $e_s=50 \sin 314t$ is applied across a pure capacitor of 637 μF. The instantaneous current I is: |
$10 \cos 314t\, A$ $50 \cos 314t\, A$ $20 \cos 314t\, A$ $20 \sin 314t\, A$ |
$10 \cos 314t\, A$ |
The correct answer is Option (1) → $10 \cos 314t\, A$ The emf $(E_s)$ applied across a pure capacitor - $E_s=E_0\sin(ωt)$ where, $E_0$ = Amplitude of emf = 50 V $ω$ = Angular frequency = $2\pi f=314\,rad/s$ $I(t)=C\frac{dv}{dt}$ where, $C=637μf=637×10^{-6}F$ $V(t)=E_0\sin(ωt)$ $I=C\frac{d(E_0\sin(ωt))}{dt}=CE_0ω\cos(ωt)$ $I(t)=(637×10^{-6})×50×314×\cos(314t)$ $=10.0\cos(314t)A$ |