For the differential equation $\left(x \log _e x\right) d y=\left(\log _e x-y\right) d x$ (A) Degree of the given differential equation is 1. Choose the correct answer from the options given below: |
(A) and (C) only (A), (B) and (C) only (A), (B) and (D) only (A) and (D) only |
(A) and (C) only |
The correct answer is Option (1) → (A) and (C) only $\left(x \log x\right) d y=\left(\log x-y\right) d x$ degree → I Not homogenous as $\frac{dy}{dx}≠λ^nf(x/y)$ $\left(x \log x\right) d y=\left(\log x-y\right) d x$ $\frac{dy}{dx}=\frac{1}{x}-\frac{y}{x\log x}$ $\int\frac{y}{x\log x}+\frac{dy}{dx}=\int\frac{1}{x}dx$ $I.F.=e^{\int\frac{y}{x\log x}dx}=e^{\log\log x}=\log x$ multiplying eq. with I.F. $\int\frac{dy}{dx}\log x+\frac{y}{x}dx=\int\frac{\log x}{x}dx$ $=y\log x=\frac{(\log x)^2}{2}+C$ $≡2y\log x+A=(\log x)^2$ only A, C correct |