When a piece of metal is illuminated by monochromatic light of wavelength '$\lambda$', the stopping potential for photoelectric current is $2.5 V_0$. When the same surface is illuminated by light of wavelength $1.5 \lambda$, the stopping potential becomes '$V_0$'. The value of threshold wavelength for photoelectric emission is: |
$9.45 \lambda$ $3.25 \lambda$ $4.75 \lambda$ $2.25 \lambda$ |
$2.25 \lambda$ |
The correct answer is Option (4) → $2.25 \lambda$ $hv=\frac{1}{2}mv^2_{max}+W_0$ [Photoelectric equation] ...(1) where, $v$ → frequency $v_{max}$ → Maximum velocity $W_0$ → Work function and, $V_s$ (Stopping Potential) = $eV_s=K.E_{max}$ ...(2) ∴ from (1) and (2) $hv=eV_s+W_0$ $⇒eV_s=hv-W_0$ and, $V_s=2.5V_0$ when wavelenght = λ $V_s=V_0$ when wavelength = 1.5λ $2.5V_0×e=\frac{hc}{λ}-\frac{hc}{λ_0}$ ...(3) $eV_0=\frac{hc}{1.5λ}-\frac{hc}{λ_0}$ ...(4) ∴ from (3) and (4) we get, $2.5\frac{hc}{1.5λ}-2.5\frac{hc}{λ_0}=\frac{hc}{λ}-\frac{hc}{λ_0}$ $\frac{hc}{λ}\left(\frac{5}{3}-1\right)=\frac{hc}{λ_0}(1.5)$ $\frac{hc}{λ}×\frac{2}{3}=\frac{hc}{λ_0}×\frac{3}{2}$ $λ_0=\frac{3×3}{2×2}λ$ $=2.25λ$ |