If f(x) be continuous function for all real values of x and satisfies, $x^2+\{f(x)-2\} x+2 \sqrt{3}-3-\sqrt{3} f(x)=0, \forall x \in R$. Then find the value of $f(\sqrt{3})$. |
$2(1+\sqrt{3})$ $2(2-\sqrt{3})$ $2(1-\sqrt{3})$ $2(2+\sqrt{3})$ |
$2(1-\sqrt{3})$ |
From the given equation, we have $f(x)=\frac{x^2-2 x+2 \sqrt{3}-3}{\sqrt{3}-x}, x \neq \sqrt{3}$ As f(x) is continuous for all $x \in R$, we must have $f(\sqrt{3})=\lim\limits_{x \rightarrow \sqrt{3}} f(x)$ $=\lim\limits_{x \rightarrow \sqrt{3}} \frac{x^2-2 x+2 \sqrt{3}-3}{\sqrt{3}-x}$ $=\lim\limits_{x \rightarrow \sqrt{3}} \frac{(2-\sqrt{3}-x)(\sqrt{3}-x)}{(\sqrt{3}-x)}$ $= 2(1-\sqrt{3})$ Hence, $f(\sqrt{3})=2(1-\sqrt{3})$ |