$\underset{x→0}{\lim}\frac{\sqrt{\frac{1}{2}(1-\cos 2x)}}{x}$ is equal to |
1 -1 0 none of these |
none of these |
$\lim=\underset{x→0}{\lim}\frac{|\sin x|}{x}$ $R.H.L=\underset{h→0}{\lim}\frac{|sin(0+h)|}{0+h}=\underset{h→0}{\lim}\frac{\sin h}{h}=1$ $R.H.L=\underset{h→0}{\lim}\frac{|sin(0-h)|}{0-h}=\underset{h→0}{\lim}\frac{|-\sin h|}{-h}=-\underset{h→0}{\lim}\frac{\sin h}{h}=-1$ Since R.H.L. ≠ L.H.L. ∴ limit does not exist. |