If 5k = tan θ and $\frac{5}{k} = secθ$, then what is the value of $10(k^2-\frac{1}{k^2})$ ? |
2 -2 $-\frac{2}{5}$ $\frac{2}{5}$ |
$-\frac{2}{5}$ |
tan θ = 5k \(\frac{tan θ }{5}\) = k & \(\frac{5 }{k}\) = sec θ \(\frac{1 }{k}\) = \(\frac{sec θ }{5}\) Now, 10 ( k² - \(\frac{1 }{k²}\) ) = 10 ( (\(\frac{tan θ }{5}\))² - (\(\frac{sec θ }{5}\))² ) = 10 ( (\(\frac{tan² θ }{25}\)) - (\(\frac{sec² θ }{25}\)) ) { we know, sec² θ - tan² θ = 1 } = -\(\frac{2 }{5}\)
|