Match List I with List II
Choose the correct answer from the options given below : | ||||||||||||||||||||
A-III, B-I, C-II, D-IV A-I, B-III, C-II, D-IV A-III, B-II, C-IV, D-I A-IV, B-III, C-I, D-II |
A-III, B-II, C-IV, D-I |
Evaluate each integral: A. $\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}}dx$ Put $x=3-t$ implies $dx=-dt$. Changing limits: $x=1\to t=2$, $x=2\to t=1$. $I=\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}}dx = \int_{1}^{2} \frac{\sqrt{3-t}}{\sqrt{t}+\sqrt{3-t}}dt$ Add both forms: $2I=\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}}dx + \int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{x}+\sqrt{3-x}}dx = \int_{1}^{2} 1dx=1$ So $I=\frac{1}{2}$. Match: A → III B. $\int_{1}^{2} x^2 dx = \left[\frac{x^3}{3}\right]_{1}^{2} = \frac{8}{3}-\frac{1}{3}=\frac{7}{3}$ Match: B → II C. $\int_{-4}^{-1}\frac{1}{x}dx = [\log|x|]_{-4}^{-1} = \log(1)-\log(4) = -\log4$ Match: C → IV D. $\int_{0}^{1}\frac{1}{2x-3}dx$ Let $u=2x-3$ implies $dx=\frac{du}{2}$ Limits: $x=0$ implies $u=-3$, $x=1$ implies $u=-1$ $I=\frac{1}{2}\int_{-3}^{-1}\frac{1}{u}du=\frac{1}{2}[\log|u|]_{-3}^{-1}=\frac{1}{2}(\log1-\log3)=-\frac{1}{2}\log3$ Match: D → I |