If A is square matrix of order 3 × 3 and $\text{|adj A| = 64}$, then the value of $|5A|$ is |
100 ±1000 320 ±320 |
±1000 |
The correct answer is Option (2) → ±1000 Given: $| \text{adj } A | = 64$ $A$ is a $3 \times 3$ matrix Property: If $A$ is a square matrix of order $n$ and $\det(A) \ne 0$, then $| \text{adj } A | = |\det(A)|^{n - 1}$ Here, $n = 3$, so: $|\text{adj } A| = |\det A|^{2} = 64 \Rightarrow |\det A| = \sqrt{64} = 8$ Now, compute $|5A|$: $|kA| = k^n |A|$ for an $n \times n$ matrix $\Rightarrow |5A| = 5^3 \cdot |A| = 125 \cdot 8 = {1000}$ |