The area bounded by the curve $y=2x-x^2$ and the straight line $Y = -x $ is: |
$\frac{7}{2}$ $\frac{5}{2}$ $\frac{9}{2}$ $\frac{27}{2}$ |
$\frac{9}{2}$ |
The correct answer is Option (3) → $\frac{9}{2}$ $y=2x-x^2$ $y=1-(x-1)^2$ Curve 1 = $(y-1)=-(x-1)^2$ Curve 2 = $y=-x$ $y=-x$ so $-x=2x-x^2$ so $x^2=3x$ $x=0,3$ points of intersection Required area = $\int\limits_0^3\left|(2x-x^2)-(-x)\right|dx$ $=\int\limits_0^33x^2-x^2dx=\left[\frac{3x^2}{2}-\frac{x^3}{3}\right]_0^3=\frac{9}{2}$ sq. unit |