The unit vector in the direction of sum of vectors $\vec{a}=2\hat{i}-\hat{j} +\hat{k}$ and $\vec{b}=2\hat{j}+\hat{k}$ is : |
$\frac{2\hat{i}+\hat{j}+2\hat{k}}{3}$ $2\hat{i}+\hat{j}+2\hat{k}$ $\frac{2\hat{i}+\hat{j}+2\hat{k}}{5}$ $\frac{2\hat{i}+\hat{j}+2\hat{k}}{7}$ |
$\frac{2\hat{i}+\hat{j}+2\hat{k}}{3}$ |
The correct answer is Option (1) → $\frac{2\hat{i}+\hat{j}+2\hat{k}}{3}$ $\vec a+\vec b=2\hat i+\hat j+2\hat k=\vec v$ $|\vec v|=\sqrt{2^2+1+2^2}=3$ so $\hat v=\frac{\vec v}{|\vec v|}=\frac{2\hat{i}+\hat{j}+2\hat{k}}{3}$ |