The area bounded by the parabola \(y=x^2-3x\) with \(y \leq 0\) is |
\(3\) \(-3\) \(-\frac{9}{2}\) \(\frac{9}{2}\) |
\(\frac{9}{2}\) |
The correct answer is Option (4) → \(\frac{9}{2}\) Points where $y=0$ $⇒x^2-3x=0$ $⇒x(x-3)=0$ $⇒x=0\,or\,x=3$ $A=\int\limits_0^3(-(x^2-3x))dx$ [Absolute value of y] $=\int\limits_0^3(3x-x^2)dx$ $=\left[\frac{3x^2}{2}-\frac{x^3}{3}\right]_0^3$ $=\left[\frac{27}{2}-\frac{18}{2}\right]=\frac{9}{2}$ sq. units |