If $sin^4x + sin^2x = 1$, then what is the value of $cot^4x + cot^2x$ ? |
-2 2 -1 1 |
1 |
We are given that, $sin^4x + sin^2x = 1$ $sin^4x = 1 - sin^2x$ { we know, sin²x + cos²x = 1 } $sin^4x = cos^2x$ sin²x = \(\frac{cos²x}{sin²x}\) sin²x = cot²x -----(1) Now, $cot^4x + cot^2x$ By using equation 1. = sin4 x + sin²x = 1 { given } |