If $f(x)$ is an integrable function on $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and $I_1=\int\limits_{\pi / 6}^{\pi / 3} \sec ^2 \theta f(2 \sin 2 \theta) d \theta$ and $I_2=\int\limits_{\pi / 6}^{\pi / 3} cosec^2 \theta f(2 \sin 2 \theta) d \theta$, then |
$I_1=2 I_2$ $I_1=3 I_2$ $2 I_1=I_2$ none of these |
none of these |
Using $\int\limits_a^b f(x) d x=\int\limits_a^b f(a+b-x) d x$, we obtain $I_1 =\int\limits_{\pi / 6}^{\pi / 3} \sec ^2\left(\frac{\pi}{2}-\theta\right) f(2 \sin (\pi-2 \theta)) d \theta$ $\Rightarrow I_1 =\int\limits_{\pi / 6}^{\pi / 3} cosec^2 \theta f(2 \sin 2 \theta) d \theta=I_2$ |