Let X denote the number of times heads occur in n tosses of a fair coin. If $P(X=4), P(X=5)$ and $P(X=6)$ are in AP, the value of n is |
7, 14 10, 14 12, 7 14, 12 |
7, 14 |
Clearly, X is a binomial variate with parameters n and $p = \frac{1}{2}$ such that $P(X=r)= {^nC}_r \, p^r \, q^{n-r}= {^nC}_r \left(\frac{1}{2}\right)^r\left(\frac{1}{2}\right)^{n-r}={^nC}_r \left(\frac{1}{2}\right)^n$ Now, $P(X=4), P(X=5)$ and $P(X=6)$ are in A.P. $⇒ 2P(X=5)=P(X=4)+P(X=6) 2 {^nC}_5 \left(\frac{1}{2}\right)^n= {^nC}_4 \left(\frac{1}{2}\right)^n+{^nC}_6 \left(\frac{1}{2}\right)^n$ $⇒ 2 \,\,{^nC}_5= {^nC}_4+{^nC}_6 $ $⇒ 2 \frac{n!}{(n-5)!5!}=\frac{n!}{(n-4)!4!}+\frac{n!}{(n-6)!6!}$ $⇒\frac{2}{5(n-5)}=\frac{1}{(n-4)(n-5)}+\frac{1}{6×5}$ $⇒ n^2 - 21 n + 98 = 0 ⇒ (n-7)(n-14) = 0 ⇒ n = 7 \, or \, 14 $ |