The projection vector of the vector $2\hat i+ 3\hat j+\hat k$ on $2\hat i+\hat j-2\hat k$ is |
$\frac{5}{3}(2\hat i+\hat j-2\hat k)$ $\frac{5}{9}(2\hat i+\hat j-2\hat k)$ $\frac{5}{14}(2\hat i+3\hat j+\hat k)$ $\frac{5}{3}$ |
$\frac{5}{9}(2\hat i+\hat j-2\hat k)$ |
The correct answer is Option (2) → $\frac{5}{9}(2\hat i+\hat j-2\hat k)$ Given vectors: $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$ $\vec{b} = 2\hat{i} + \hat{j} - 2\hat{k}$ Formula for projection vector of $\vec{a}$ on $\vec{b}$: $\text{Proj}_{\vec{b}} \vec{a} = \left( \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right) \vec{b}$ Step 1: Dot product $\vec{a} \cdot \vec{b} = (2)(2) + (3)(1) + (1)(-2) = 4 + 3 - 2 = 5$ Step 2: Magnitude squared of $\vec{b}$ $|\vec{b}|^2 = 2^2 + 1^2 + (-2)^2 = 4 + 1 + 4 = 9$ Step 3: Projection vector $\text{Proj}_{\vec{b}} \vec{a} = \left( \frac{5}{9} \right)(2\hat{i} + \hat{j} - 2\hat{k})$ $= \frac{10}{9}\hat{i} + \frac{5}{9}\hat{j} - \frac{10}{9}\hat{k}$ |