The value of \(\frac{cos^6θ + sin^6θ + 3sin^2θ cos^2θ}{cosec θ sec θ ( 1 - sin θ - cos θ) ( 1+ sin θ + cos θ)}\) is ? |
\(\frac{1}{2}\) -\(\frac{1}{2}\) 0 1 |
-\(\frac{1}{2}\) |
Here, ⇒ cos6 θ + sin6 θ + 3sin2 cos2 θ = cos6 θ + sin6 θ + 3sin2 cos2 θ (sin2 θ + cos2 θ) = (cos2 θ + sin2 θ)3 = 1 Now, = \(\frac{1}{cosec θ sec θ ( 1 - (sin θ + cos θ)(1 + (sin θ + cos θ)}\) = \(\frac{1}{cosec θ sec θ (1^2 - (sinθ + cosθ)^2)}\) = \(\frac{1}{cosec θ sec θ ( - 2sin θ cos θ) }\) = - \(\frac{1}{2}\) |