If $\vec a$ and $\vec b$, are two non-zero vectors such that $|\vec a.\vec b| =|\vec a × \vec b|$, than the angle θ between $\vec a$ and $\vec b$ is |
$\frac{\pi}{2}$ $\frac{\pi}{4}$ $\frac{\pi}{6}$ $\frac{\pi}{3}$ |
$\frac{\pi}{4}$ |
The correct answer is Option (2) → $\frac{\pi}{4}$ $| \mathbf{a} \cdot \mathbf{b} | = | \mathbf{a} \times \mathbf{b} |$ $| \mathbf{a} \cdot \mathbf{b} | = |a| |b| \cos \theta$ $| \mathbf{a} \times \mathbf{b} | = |a| |b| \sin \theta$ Equating: $|a| |b| \cos \theta = |a| |b| \sin \theta$ Cancel out the non-zero terms: $| \cos \theta | = | \sin \theta |$ This is true when: $\theta = 45^\circ \text{ or } 135^\circ$ $\theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$ |