A moving hydrogen atom absorbs a photon of wavelength 221 nm and stops. If the mass of the hydrogen atom is $1.67 × 10^{-27} kg$, what will be the linear momentum of the photon? (Given: $h = 6.63 × 10^{-34} Js$) |
$3 × 10^{-27}\, N\, s^{-1}$ $3 × 10^{-25}\, N\, s$ $3 × 10^{-27}\, N\, s$ $3 × 10^{-26}kg\, m\, s^{-1}$ |
$3 × 10^{-27}\, N\, s$ |
The correct answer is Option (4) → $3 × 10^{-27}kg\, m\, s^{-1}$ The linear momentum of a photon is related to its wavelength by the formula: $P_{\text{photon}} = \frac{h}{\lambda}$ Here, $h$ is Planck's constant ($6.63 \times 10^{-34} \, \text{Js}$) and $\lambda$ is the wavelength of the photon. Given $\lambda = 221 \, \text{nm} = 221 \times 10^{-9} \, \text{m}$, $P_{\text{photon}} = \frac{6.63 \times 10^{-34}}{221 \times 10^{-9}}$ $P_{\text{photon}} \approx 2.998 \times 10^{-27} \, \text{kg·m/s}$ Rounding to one significant figure in standard form, $P_{\text{photon}} \approx 3 \times 10^{-27} \, \text{kg·m/s}$ This is the momentum carried by the photon that stops the hydrogen atom upon absorption. |