Match List-I with List-II. For the figure given above, match the following:
Choose the correct answer from the options given below : | ||||||||||||||||||||
(A)-(II), (B)-(III), (C)-(IV), (D)-(I) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) (A)-(IV), (B)-(I), (C)-(II), (D)-(III) (A)-(I), (B)-(II), (C)-(III), (D)-(IV) |
(A)-(II), (B)-(III), (C)-(IV), (D)-(I) |
The correct answer is Option (1) → (A)-(II), (B)-(III), (C)-(IV), (D)-(I) (A) Coinitial vectors → ($\vec a$ and $\vec d$) (II) have some initiating point (B) Equal vectors → ($\vec b$ and $\vec d$) (III) as $|\vec b|=|\vec d|$ and $\hat b=\hat d$ (C) Collinear but not equal → ($\vec a$ and $\vec c$) (IV) as $\vec a=-\vec c$ (D) Collinear vector → ($\vec a,\vec c$ and $\vec b,\vec d$) (I) |