If the area of triangle with vertices A(1, 3), B(2, 0) and C(k, 2 k) is $\frac{k^2}{2}$ sq. units, then the value(s) of k is/are: |
2 and -3 -2 and -3 2 and 3 -2 and 3 |
2 and 3 |
The correct answer is Option (3) - 2 and 3 area = $\frac{1}{2}\begin{Vmatrix}1&3&1\\2&0&1\\k&2k&1\end{Vmatrix}=\frac{k^2}{2}$ $R_2→R_2-R_1,R_3→R_3-R_1$ $\begin{Vmatrix}1&3&1\\1&-3&1\\k-1&2k-3&0\end{Vmatrix}=k^2$ $=2k-3+3k-3=k^2$ $k^2-5k+6=0$ $(k-2)(k-3)=0$ $⇒k=2,3$ |