The activation energies of the two reactions are 18 kJ mol–1 and 4.0 kJ mol–1 respectively. Assuming the pre-exponential factor to be the same for both reactions, the ratio of their rate constants at 27°C is: |
3.656 × 10–3 3.624 × 10–6 36.52 × 10–8 4.656 × 10–4 |
3.656 × 10–3 |
The correct answer is option 1. 3.656 × 10–3 According to Arrhenius equation, \(lnk_1 = lnA − \frac{18}{RT}\) -----(1) \(lnk_2 = lnA − \frac{4}{RT}\) -------(2) Subtracting (2) from (1), \(lnk_1 − lnk_2= −\frac{18}{RT} + \frac{4}{RT}\) \(⇒⇒lnk_1 − lnk_2= \frac{1}{RT}[4 − 18]\) \(⇒lnk_1 − lnk_2= −\frac{14kJ}{RT}\) \(⇒ log\left(\frac{k_1}{k_2}\right) = − \frac{−14 × 10^3}{2.303 × 8.314 × 300}\) \(⇒ log\left(\frac{k_1}{k_2}\right) = − \frac{−14 × 10^3}{5744.1426}\) \(⇒ log\left(\frac{k_1}{k_2}\right) = − 2.437\) \(⇒ \left(\frac{k_1}{k_2}\right) = antilog(− 2.437)\) \(⇒ \left(\frac{k_1}{k_2}\right) = 0.0036559\) \(⇒ \left(\frac{k_1}{k_2}\right) = 3.656 × 10^{−3}\text{ J/mol}\) |