The area of the region enclosed between the two circles $x^2+y^2 = 1 $ and $(x-1)^2 +y^2 =1$ is |
$\left(\frac{2\pi }{3} -\frac{\sqrt{3}}{4}\right)$ units $\left(\frac{\pi }{3} -\frac{2\sqrt{3}}{3}\right)$ units $\left(\frac{2\pi }{3} -\frac{\sqrt{3}}{2}\right)$ units $\left(\frac{\pi }{6} -\frac{\sqrt{3}}{2}\right)$ units |
$\left(\frac{2\pi }{3} -\frac{\sqrt{3}}{2}\right)$ units |
The correct answer is Option (3) → $\left(\frac{2\pi }{3} -\frac{\sqrt{3}}{2}\right)$ sq. units By symmetry I = II = III = IV finding intersection points $x^2+y^2=1$ $(x-1)^2+y^2=1$ $⇒x^2=(x-1)^2$ so $x=\frac{1}{2}$ so area required = $4 ×area\,I$ $=4 ×\int\limits_{1/2}^1\sqrt{1-x^2}dx$ $=4\left[\frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}\sin^{-1}x\right]_{1/2}^1$ $=\frac{2\pi }{3} -\frac{\sqrt{3}}{2}$ sq. units |