The value of $\int\limits_0^{1} \frac{a-b x^2}{\left(a+b x^2\right)^2} d x$ is: |
$\frac{a-b}{a+b}$ $\frac{1}{a-b}$ $\frac{a+b}{2}$ $\frac{1}{a+b}$ |
$\frac{1}{a+b}$ |
The correct answer is Option (4) → $\frac{1}{a+b}$ $\int\limits_0^{1} \frac{a-b x^2}{\left(a+b x^2\right)^2} d x$ $I=\int\limits_0^{1}\frac{\frac{a}{x^2}-b}{\left(\frac{a}{x}+bx\right)^2}dx$ let $y=\frac{a}{x}+bx$ $dy=-\frac{a}{x^2}+bdx$ $x→0,y→∞$ $x→1,y→a+b$ $I=\int\limits_{∞}^{a+b}-\frac{dy}{y^2}=\int\limits^{∞}_{a+b}\frac{dy}{y^2}$ $=\left[\frac{1}{y}\right]_{∞}^{a+b}$ $=\frac{1}{a+b}-0$ $=\frac{1}{a+b}$ |