Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + ... +∞}}}$ then $\frac{dy}{dx}$ equals to

Options:

$\frac{-\cos x}{2y-1}$

$\frac{\cos x}{2y-1}$

$\frac{\sin x}{1-2y}$

$\frac{1-2y}{\cos x}$

Correct Answer:

$\frac{\cos x}{2y-1}$

Explanation:

The correct answer is Option (2) → $\frac{\cos x}{2y-1}$

Let $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \cdots}}}$

Then, $y = \sqrt{\sin x + y}$

Squaring both sides: $y^2 = \sin x + y$

$\Rightarrow y^2 - y - \sin x = 0$

Differentiate both sides: $2y \cdot \frac{dy}{dx} - \frac{dy}{dx} - \cos x = 0$

$\Rightarrow \frac{dy}{dx} (2y - 1) = \cos x$

$\Rightarrow \frac{dy}{dx} = \frac{\cos x}{2y - 1}$