If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + ... +∞}}}$ then $\frac{dy}{dx}$ equals to |
$\frac{-\cos x}{2y-1}$ $\frac{\cos x}{2y-1}$ $\frac{\sin x}{1-2y}$ $\frac{1-2y}{\cos x}$ |
$\frac{\cos x}{2y-1}$ |
The correct answer is Option (2) → $\frac{\cos x}{2y-1}$ Let $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \cdots}}}$ Then, $y = \sqrt{\sin x + y}$ Squaring both sides: $y^2 = \sin x + y$ $\Rightarrow y^2 - y - \sin x = 0$ Differentiate both sides: $2y \cdot \frac{dy}{dx} - \frac{dy}{dx} - \cos x = 0$ $\Rightarrow \frac{dy}{dx} (2y - 1) = \cos x$ $\Rightarrow \frac{dy}{dx} = \frac{\cos x}{2y - 1}$ |