The number of roots of the equation $2^x+2^{x-1}+2^{x-2}=7^x+7^{x-1}+7^{x-2}$, is ______. |
1 |
We have, $2^x+2^{x-1}+2^{x-2}=7^x+7^{x-1}+7^{x-2}$ $⇒2^x(1+\frac{1}{2}+\frac{1}{4})=7^x(1+\frac{1}{7}+\frac{1}{49})$ $⇒2^x×\frac{7}{4}=7^x×\frac{57}{49}$ $⇒2^{x-2}=7^{x-2}×\frac{57}{7}$ $⇒(\frac{7}{2})^{x-2}=\frac{7}{57}$ $⇒x-2=\log_{(7/2)}(\frac{7}{57})⇒x=2+\log_{7/2}(\frac{7}{57})$ $y_1=2^x+2^{x-1}+2^{x-2}$ $y_2=7^x+7^{x-1}+7^{x-2}$ $y_1=2^x(1+\frac{1}{2}+\frac{1}{4})$ $y_2=7^x(1+\frac{1}{7}+\frac{1}{49})$ Hence, the given equation has one root. |