If the normal to the curve y = f(x) at the point (3, 4) makes an angle $\frac{3 \pi}{4}$ with the positive x-axis, then f'(3) = |
-1 $-\frac{3}{4}$ $-\frac{4}{3}$ 1 |
1 |
We have, $y=f(x)$ $\Rightarrow \frac{d y}{d x}=f'(x) \Rightarrow\left(\frac{d y}{d x}\right)_{(3,4)}=f'(3) \Rightarrow-\frac{1}{\left(\frac{d y}{d x}\right)_{(3,4)}}=-\frac{1}{f'(3)}$ It is given that the slope of the normal $=\tan \frac{3 \pi}{4}$ ∴ $\tan \frac{3 \pi}{4}=-\frac{1}{f'(3)} \Rightarrow f'(3)=1$ |