Solve the differential equation (dy/dx)- 3y cot x =sin 2x ; y=2 when x= π/2. |
y= 4sin 3x -2sin2x y= 4sin 3x -2sin2x y= 5sin 3x -2sin2x y= 4sin 3x -5sin2x |
y= 4sin 3x -2sin2x |
The given differential equation is (dy/dx) -3ycotx = sin 2x which is of the form dy/dx + py =Q (Where p= -3cot x and Q= sin 2x) Now, I.F. = e∫pdx I.F. = e-3∫cotdx So. I.F. = 1/(sin 3x) The solution is given by: y.(I.F.) = ∫Q x(I.F.)dx +C ⇒ y. 1/(sin 3x) = ∫{sin2x. 1/(sin 3x)} dx +C ⇒ y. cosec3x = 2∫(cot x.cosecx dx) +C ⇒ y= 2sin2x+ C sin 3x ......................(1) now, y =2 at x= π/2 Therefore, we get: 2 =-2 +C C= 4 So from equation (1) y= 4sin 3x -2sin2x |