If $(x+y): (x-y)=7: 3$, then find the ratio of $(x^2+ y^2): (x^2-y^2)$. |
21 : 29 29 : 21 3 : 4 4 : 3 |
29 : 21 |
(x+y):(x-y) = 7:3 1) $(x+y)*(x-y) = 21k^2$ $x^2 - y^2 = 21k^2$ ......a 2) $(x+y)*(x+y) = 49 k^2$ $x^2 + y^2 + 2xy = 49 k^2$ .......b 3) $(x-y)*(x-y) = 9 k^2$ $x^2 + y^2 - 2xy = 9 k^2$ ...c Equation b + c, $2(x^2 + y^2) = 58 k^2$ $(x^2 + y^2) = 29 k^2$ $(x^2+ y^2): (x^2-y^2)$ = 29:21 The correct answer is Option (2) → 29 : 21 |