One face of a prism of refractive index 1.5 and angle 75° is covered with a liquid of refractive index $\frac{3\sqrt{2}}{4}$. What should be the angle of incidence of light on the clear face of prism for which light is just totally reflected at the liquid covered face? |
$\sin^{-1}(\frac{1}{4})$ $\sin^{-1}(\frac{1}{2})$ $\sin^{-1}(\frac{3}{4})$ $\sin^{-1}(\frac{2}{3})$ |
$\sin^{-1}(\frac{3}{4})$ |
The correct answer is Option (3) → $\sin^{-1}(\frac{3}{4})$ The critical angle is - $\sin θ_c=\frac{μ_{liquid}}{μ_{prism}}=\frac{\sqrt{4/3}}{1.5}≃0.77$ Using Snell's law $μ_{air}\sin i=μ_{prism}\sin r$ $⇒\sin i=1.5 \sin r$ $⇒\sin i=1.5×\sin(75°-50°)$ $≃0.631$ $⇒i=\sin^{-1}(\frac{3}{4})$ |