If $A =\begin{bmatrix}x+z&2&-3\\x&0&4\\3&x-y&0\end{bmatrix}$ is a skew-symmetric matrix, then which of the following are true? (A) $y >z>x$ Choose the correct answer from the options given below: |
(A) and (D) only (B), (C) and (D) only (B) only (C) and (D) only |
(C) and (D) only |
The correct answer is Option (4) → (C) and (D) only Given matrix: $A = \begin{bmatrix} x+z & 2 & -3 \\ x & 0 & 4 \\ 3 & x-y & 0 \end{bmatrix}$ For a skew-symmetric matrix: $A^T = -A \Rightarrow a_{ii} = 0$ and $a_{ij} = -a_{ji}$ Check diagonal elements: $a_{11} = x+z = 0 \Rightarrow x + z = 0 \Rightarrow z = -x$ $a_{22} = 0$ $a_{33} = 0$ Check off-diagonal elements: $a_{12} = 2$, $a_{21} = x \Rightarrow x = -2$ Then $z = -x = 2$ $a_{23} = 4$, $a_{32} = x - y = -2 - y \Rightarrow 4 = -(-2 - y) = 2 + y \Rightarrow y = 2$ Now values: $x = -2, y = 2, z = 2$ Check options: (A) y > z > x → 2 > 2 > -2 → false (y ≯ z) (B) x > y → -2 > 2 → false (C) x + y + z = -2 + 2 + 2 = 2 > 0 → true (D) z > x → 2 > -2 → true Correct statements: (C), (D) |